Generator
The subsystem within a generative adversarial network that creates new examples. Contrast with discriminative model.
Generative model
Practically speaking, a model that does either of the following:
- Creates (generates) new examples from the training dataset. For example, a generative model could create poetry after training on a dataset of poems. The generator part of a generative adversarial network falls into this category.
- Determines the probability that a new example comes from the training set, or was created from the same mechanism that created the training set. For example, after training on a dataset consisting of English sentences, a generative model could determine the probability that new input is a valid English sentence.
A generative model can theoretically discern the distribution of examples or particular features in a dataset. That is:
p(examples)
Unsupervised learning models are generative.
Contrast with discriminative models.
GPT
GPT (Generative Pre-trained Transformer) |
---|
A family of Transformer-based large language models developed by OpenAI. |
GPT variants can apply to multiple modalities, including: |
✔ image generation (for example, ImageGPT) |
✔ text-to-image generation (for example, DALL-E). |
Cross Validation (CV)
Cross-Validation | Nested Cross-Validation |
---|---|
Cross-Validation
- Common types of cross-validation : k-fold cross-validation and hold-out cross-validation
- CV Procedure
- Split the dataset into 2 subsets → Training set & Test set
- For parameter tuning : Split the Trining set into 2 subsets → Training subset & Validation set
- Train the model on the Training subset
- Choose the parameters that minimize the error on the Validation set
- Training the model on the Full Training set using the chosen parameters & Record the error on the Test set
Nested Cross-Validation
- Traditional CV methods should not be used on Time-series(TS) data : Temporal Dependencies & Arbitrary Choice of Test Set
Nested CV Procedure |
---|
1. Predict Second Half |
2. Day Forward-Chaining |
Multimodal Learning
인간의 인지적 학습법을 모방하여 다양한 형태(modality)의 데이터로 학습하는 방법으로, 변수차원이 각기다른 데이터셋 (modality)가 여럿 모여 동시에 학습하는 방법론이다. (데이터 통합적 분석을 위해 중요성 대두)
Multimodal
Multimodal :
Modality
가 여러 개 존재
→Modality 양식
: 특정 자원으로부터 수집된 데이터 표현 방식
→ Multimodal data : 다양한 자원으로부터 수집된 데이터가 하나의 정보를 표현하는 데이터e.g, 반도체 관측치 하나에 대해 센서 시그널, 이미지, 텍스트 데이터 수집해 분석
'Certificate - DS > Deep learning specialization' 카테고리의 다른 글
Activation Function - ReLU (0) | 2021.12.12 |
---|---|
Model Debugging - Hyperparameter 하이퍼파라미터 값 조정 (0) | 2021.11.23 |
Model debugging and Loss curve (0) | 2021.11.23 |
Hyperparameters Tuning 하이퍼파라미터 튜닝 (0) | 2021.11.22 |
Activation Function 활성화 함수 - Sigmoid, tanh, ReLU, LeakyReLU (0) | 2021.11.21 |