BigQuery options for DATA AND ANALYTICS | Description |
---|---|
BigQuery |
Data warehouse/analytics |
BigQuery BI Engine |
In-memory analytics engine |
BigQuery ML | BigQuery model training/serving |
BigQuery ML : BigQuery model training/serving
- Create and execute machine learning models in BigQuery using standard SQL queries.
- BigQuery ML increases development speed by eliminating the need to move data.
- Can only export to
Cloud Storage
Query & Terms
- Label = alias a column as‘label’or specify column in OPTIONS using input_label_cols
- Feature :
ML.FEATURE_INFO
passed through to the model as part of your SQL SELECT statement SELECT * FROM ML.FEATURE_INFO(MODEL`mydataset.mymodel`)
- Model = an object created in BigQuery that resides in your BigQuery dataset
CREATE OR REPLACE MODEL <dataset>.<name> OPTIONS(model_type='<type>') AS <training dataset>
- Training Progress :
ML.TRAINING_INFO
SELECT * FROM ML.TRAINING_INFO(MODEL `mydataset.mymodel`)
- Inspect Weights :
ML.WEIGHTS
SELECT * FROM ML.WEIGHTS(MODEL `mydataset.mymodel`, (<query>))
- Evaluation :
ML.EVALUATE
SELECT * FROM ML.EVALUATE(MODEL `mydataset.mymodel`)
- Prediction :
ML.PREDICT
SELECT * FROM ML.PREDICT(MODEL `mydataset.mymodel`, (<query>))
Supported Model Type
- Linear Regression
- Binary logistic regression
- Multi class logistic regression
- K-means clustering
- Matrix factorization for recommendation system
- Time series
- Boosted tree
- DNN
- AUTOML tables
- Import previously trained TensorFlow models
Making predictions with imported TensorFlow models in BQML
3 ways to import & use TF models in BQML : console / bq / API
1. how to import TensorFlow models into a BigQuery ML dataset
# run a batch query to import a tf model from cloud storage
bq query --use_legacy_sql=false \
"CREATE OR REPLACE MODEL
example_dataset.imported_tf_model
OPTIONS
(MODEL_TYPE='TENSORFLOW',
MODEL_PATH='gs://cloud-training-demos/txtclass/export/exporter/1549825580/*')"
### result of bq ls [dataset_name]
$ bq ls example_dataset
tableId Type Labels Time Partitioning
------------------- ------- -------- -------------------
imported_tf_model MODEL
2. how to use them to make predictions from a SQL query
bq query \
--use_legacy_sql=false \
'SELECT *
FROM ML.PREDICT(
MODEL tensorflow_sample.imported_tf_model,
(SELECT title AS input FROM `bigquery-public-data.hacker_news.stories`))'
### result
+----------------------------------------------------------------------+------------------------------------------------------------------------------------+
| dense_1 | input |
+----------------------------------------------------------------------+------------------------------------------------------------------------------------+
| ["0.8611106276512146","0.06648492068052292","0.07240450382232666"] | Appshare |
| ["0.6251608729362488","0.2989124357700348","0.07592673599720001"] | A Handfull of Gold. |
| ["0.014276246540248394","0.972910463809967","0.01281337533146143"] | Fastest Growing Skin Care Supplement for Increased Hair, Skin and Nail Nourishment |
| ["0.9821603298187256","1.8601855117594823E-5","0.01782100833952427"] | R4 3ds sdhc |
| ["0.8611106276512146","0.06648492068052292","0.07240450382232666"] | Empréstimo Com Nome Sujo |
+----------------------------------------------------------------------+------------------------------------------------------------------------------------+
Q 38.
You have trained a text classification model in TensorFlow using AI Platform. You want to use the trained model for batch predictions on text data stored in BigQuery while minimizing computational overhead. What should you do?
- ⭕ A. Export the model to
BigQuery ML
.
→ OPTIMAL choice ; dataset in BQ which supports Import previously trained TensorFlow models- ❌ B. Deploy and version the model on
AI Platform
.- ❌ C. Use
Dataflow
with the SavedModel to read the data fromBigQuery
.- ❌ D. Submit a batch prediction job on
AI Platform
that points to the model location inCloud Storage
.
'Certificate - DS > Machine learning engineer' 카테고리의 다른 글
Terminology relevant to GCP ML Systems (0) | 2021.11.29 |
---|---|
Production ML Systems - Tuning System Performance (0) | 2021.11.29 |
Feature Engineering - Feature Crosses (0) | 2021.11.29 |
Which GCP service to use - Orchestration : Scheduler, Composer, Workflows (0) | 2021.11.28 |
Which GCP service to use - Cloud Functions (0) | 2021.11.28 |